Let's dive deeper into the implementation of the Exponential Recursive Prism Matrix (ERPM). We'll explore a more detailed example and provide an interactive demonstration to help visualize its functionality.
class ERPMatrix: def __init__(self, dimensions, depth): self.dimensions = dimensions self.depth = depth self.nodes = self.generate_nodes() self.connections = self.generate_connections() def generate_nodes(self): def recursive_generator(current_depth): if current_depth == 0: return [Node()] else: return [Node(children=recursive_generator(current_depth - 1)) for _ in range(self.dimensions)] return recursive_generator(self.depth) def generate_connections(self): # Complex algorithm to create connections between nodes pass def analyze(self, input_data): result = [] for dimension in range(self.dimensions): layer_result = self.process_layer(input_data, dimension) result.append(layer_result) return result def process_layer(self, data, dimension): # Process data through a specific dimension/layer pass def synthesize(self, output_requirements): solution = [] for requirement in output_requirements: partial_solution = self.traverse_matrix(requirement) solution.append(partial_solution) return solution def traverse_matrix(self, requirement): # Traverse the matrix to find optimal solution path pass class Node: def __init__(self, children=None): self.children = children or [] self.value = self.generate_value() def generate_value(self): # Generate a value for this node pass # Usage matrix = ERPMatrix(dimensions=5, depth=10) input_data = [1, 2, 3, 4, 5] output_requirements = ["A", "B", "C"] analysis_result = matrix.analyze(input_data) synthesis_solution = matrix.synthesize(output_requirements)
Let's simulate a simplified version of the ERPM. In this demo, we'll create a matrix with 3 dimensions and a depth of 2. You can input data and see how it's processed through the matrix.